THE STONEMASON'S PROBLEM.—solution

The puzzle amounts to this. Find the smallest square number that may be expressed as the sum of more than three consecutive cubes, the cube 1 being barred. As more than three heaps were to be supplied, this condition shuts out the otherwise smallest answer, 233 + 243 + 253 = 2042. But it admits the answer, 253 + 263 + 273 + 283 + 293 = 3152. The correct answer, however, requires more heaps, but a smaller aggregate number of blocks. Here it is: 143 + 153 + ... up to 253 inclusive, or twelve heaps in all, which, added together, make 97,344 blocks of stone that may be laid out to form a square 312 × 312. I will just remark that one key to the solution lies in what are called triangular numbers.

 

click here to go to my blog.

See more interesting puzzles at http://puzzles.50webs.org