Puzzles to puzzle you .

 Amusements in Mathematics Other Puzzles Send new puzzles

## UNICURSAL AND ROUTE PROBLEMS.

"I see them on their winding way."
REGINALD HEBER.

It is reasonable to suppose that from the earliest ages one man has asked another such questions as these: "Which is the nearest way home?" "Which is the easiest or pleasantest way?" "How can we find a way that will enable us to dodge the mastodon and the plesiosaurus?" "How can we get there without ever crossing the track of the enemy?" All these are elementary route problems, and they can be turned into good puzzles by the introduction of some conditions that complicate matters. A variety of such complications will be found in the following examples. I have also included some enumerations of more or less difficulty. These afford excellent practice for the reasoning faculties, and enable one to generalize in the case of symmetrical forms in a manner that is most instructive.

239.—A JUVENILE PUZZLE.

For years I have been perpetually consulted by my juvenile friends about this little puzzle. Most children seem to know it, and yet, curiously enough, they are invariably unacquainted with the answer. The question they always ask is, "Do, please, tell me whether it is really possible." I believe Houdin the conjurer used to be very fond of giving it to his child friends, but I cannot say whether he invented the little puzzle or not. No doubt a large number of my readers will be glad to have the mystery of the solution cleared up, so I make no apology for introducing this old "teaser."

The puzzle is to draw with three strokes of the pencil the diagram that the little girl is exhibiting in the illustration. Of course, you must not remove your pencil from the paper during a stroke or go over the same line a second time. You will find that you can get in a good deal of the figure with one continuous stroke, but it will always appear as if four strokes are necessary.

Another form of the puzzle is to draw the diagram on a slate and then rub it out in three rubs.

Solution

240.—THE UNION JACK.

The illustration is a rough sketch somewhat resembling the British flag, the Union Jack. It is not possible to draw the whole of it without lifting the pencil from the paper or going over the same line twice. The puzzle is to find out just how much of the drawing it is possible to make without lifting your pencil or going twice over the same line. Take your pencil and see what is the best you can do.

Solution

241.—THE DISSECTED CIRCLE.

How many continuous strokes, without lifting your pencil from the paper, do you require to draw the design shown in our illustration? Directly you change the direction of your pencil it begins a new stroke. You may go over the same line more than once if you like. It requires just a little care, or you may find yourself beaten by one stroke.

Solution

242.—THE TUBE INSPECTOR'S PUZZLE.

The man in our illustration is in a little dilemma. He has just been appointed inspector of a certain system of tube railways, and it is his duty to inspect regularly, within a stated period, all the company's seventeen lines connecting twelve stations, as shown on the big poster plan that he is contemplating. Now he wants to arrange his route so that it shall take him over all the lines with as little travelling as possible. He may begin where he likes and end where he likes. What is his shortest route?

Could anything be simpler? But the reader will soon find that, however he decides to proceed, the inspector must go over some of the lines more than once. In other words, if we say that the stations are a mile apart, he will have to travel more than seventeen miles to inspect every line. There is the little difficulty. How far is he compelled to travel, and which route do you recommend?

Solution

243.—VISITING THE TOWNS.

A traveller, starting from town No. 1, wishes to visit every one of the towns once, and once only, going only by roads indicated by straight lines. How many different routes are there from which he can select? Of course, he must end his journey at No. 1, from which he started, and must take no notice of cross roads, but go straight from town to town. This is an absurdly easy puzzle, if you go the right way to work.

Solution

244.—THE FIFTEEN TURNINGS.

Here is another queer travelling puzzle, the solution of which calls for ingenuity. In this case the traveller starts from the black town and wishes to go as far as possible while making only fifteen turnings and never going along the same road twice. The towns are supposed to be a mile apart. Supposing, for example, that he went straight to A, then straight to B, then to C, D, E, and F, you will then find that he has travelled thirty-seven miles in five turnings. Now, how far can he go in fifteen turnings?

Solution

245.—THE FLY ON THE OCTAHEDRON.

"Look here," said the professor to his colleague, "I have been watching that fly on the octahedron, and it confines its walks entirely to the edges. What can be its reason for avoiding the sides?"

"Perhaps it is trying to solve some route problem," suggested the other. "Supposing it to start from the top point, how many different routes are there by which it may walk over all the edges, without ever going twice along the same edge in any route?"

The problem was a harder one than they expected, and after working at it during leisure moments for several days their results did not agree—in fact, they were both wrong. If the reader is surprised at their failure, let him attempt the little puzzle himself. I will just explain that the octahedron is one of the five regular, or Platonic, bodies, and is contained under eight equal and equilateral triangles. If you cut out the two pieces of cardboard of the shape shown in the margin of the illustration, cut half through along the dotted lines and then bend them and put them together, you will have a perfect octahedron. In any route over all the edges it will be found that the fly must end at the point of departure at the top.

Solution

246.—THE ICOSAHEDRON PUZZLE.

The icosahedron is another of the five regular, or Platonic, bodies having all their sides, angles, and planes similar and equal. It is bounded by twenty similar equilateral triangles. If you cut out a piece of cardboard of the form shown in the smaller diagram, and cut half through along the dotted lines, it will fold up and form a perfect icosahedron.

Now, a Platonic body does not mean a heavenly body; but it will suit the purpose of our puzzle if we suppose there to be a habitable planet of this shape. We will also suppose that, owing to a superfluity of water, the only dry land is along the edges, and that the inhabitants have no knowledge of navigation. If every one of those edges is 10,000 miles long and a solitary traveller is placed at the North Pole (the highest point shown), how far will he have to travel before he will have visited every habitable part of the planet—that is, have traversed every one of the edges?

Solution

247.—INSPECTING A MINE.

The diagram is supposed to represent the passages or galleries in a mine. We will assume that every passage, A to B, B to C, C to H, H to I, and so on, is one furlong in length. It will be seen that there are thirty-one of these passages. Now, an official has to inspect all of them, and he descends by the shaft to the point A. How far must he travel, and what route do you recommend? The reader may at first say, "As there are thirty-one passages, each a furlong in length, he will have to travel just thirty-one furlongs." But this is assuming that he need never go along a passage more than once, which is not the case. Take your pencil and try to find the shortest route. You will soon discover that there is room for considerable judgment. In fact, it is a perplexing puzzle.

Solution

248.—THE CYCLISTS' TOUR.

Two cyclists were consulting a road map in preparation for a little tour together. The circles represent towns, and all the good roads are represented by lines. They are starting from the town with a star, and must complete their tour at E. But before arriving there they want to visit every other town once, and only once. That is the difficulty. Mr. Spicer said, "I am certain we can find a way of doing it;" but Mr. Maggs replied, "No way, I'm sure." Now, which of them was correct? Take your pencil and see if you can find any way of doing it. Of course you must keep to the roads indicated.

Solution

249.—THE SAILOR'S PUZZLE.

The sailor depicted in the illustration stated that he had since his boyhood been engaged in trading with a small vessel among some twenty little islands in the Pacific. He supplied the rough chart of which I have given a copy, and explained that the lines from island to island represented the only routes that he ever adopted. He always started from island A at the beginning of the season, and then visited every island once, and once only, finishing up his tour at the starting-point A. But he always put off his visit to C as long as possible, for trade reasons that I need not enter into. The puzzle is to discover his exact route, and this can be done with certainty. Take your pencil and, starting at A, try to trace it out. If you write down the islands in the order in which you visit them—thus, for example, A, I, O, L, G, etc.—you can at once see if you have visited an island twice or omitted any. Of course, the crossings of the lines must be ignored—that is, you must continue your route direct, and you are not allowed to switch off at a crossing and proceed in another direction. There is no trick of this kind in the puzzle. The sailor knew the best route. Can you find it?

Solution

250.—THE GRAND TOUR.

One of the everyday puzzles of life is the working out of routes. If you are taking a holiday on your bicycle, or a motor tour, there always arises the question of how you are to make the best of your time and other resources. You have determined to get as far as some particular place, to include visits to such-and-such a town, to try to see something of special interest elsewhere, and perhaps to try to look up an old friend at a spot that will not take you much out of your way. Then you have to plan your route so as to avoid bad roads, uninteresting country, and, if possible, the necessity of a return by the same way that you went. With a map before you, the interesting puzzle is attacked and solved. I will present a little poser based on these lines.

I give a rough map of a country—it is not necessary to say what particular country—the circles representing towns and the dotted lines the railways connecting them. Now there lived in the town marked A a man who was born there, and during the whole of his life had never once left his native place. From his youth upwards he had been very industrious, sticking incessantly to his trade, and had no desire whatever to roam abroad. However, on attaining his fiftieth birthday he decided to see something of his country, and especially to pay a visit to a very old friend living at the town marked Z. What he proposed was this: that he would start from his home, enter every town once and only once, and finish his journey at Z. As he made up his mind to perform this grand tour by rail only, he found it rather a puzzle to work out his route, but he at length succeeded in doing so. How did he manage it? Do not forget that every town has to be visited once, and not more than once.

Solution

251.—WATER, GAS, AND ELECTRICITY.

There are some half-dozen puzzles, as old as the hills, that are perpetually cropping up, and there is hardly a month in the year that does not bring inquiries as to their solution. Occasionally one of these, that one had thought was an extinct volcano, bursts into eruption in a surprising manner. I have received an extraordinary number of letters respecting the ancient puzzle that I have called "Water, Gas, and Electricity." It is much older than electric lighting, or even gas, but the new dress brings it up to date. The puzzle is to lay on water, gas, and electricity, from W, G, and E, to each of the three houses, A, B, and C, without any pipe crossing another. Take your pencil and draw lines showing how this should be done. You will soon find yourself landed in difficulties.

Solution

252.—A PUZZLE FOR MOTORISTS.

Eight motorists drove to church one morning. Their respective houses and churches, together with the only roads available (the dotted lines), are shown. One went from his house A to his church A, another from his house B to his church B, another from C to C, and so on, but it was afterwards found that no driver ever crossed the track of another car. Take your pencil and try to trace out their various routes.

Solution

253.—A BANK HOLIDAY PUZZLE.

Two friends were spending their bank holiday on a cycling trip. Stopping for a rest at a village inn, they consulted a route map, which is represented in our illustration in an exceedingly simplified form, for the puzzle is interesting enough without all the original complexities. They started from the town in the top left-hand corner marked A. It will be seen that there are one hundred and twenty such towns, all connected by straight roads. Now they discovered that there are exactly 1,365 different routes by which they may reach their destination, always travelling either due south or due east. The puzzle is to discover which town is their destination.

Of course, if you find that there are more than 1,365 different routes to a town it cannot be the right one.

Solution

254.—THE MOTOR-CAR TOUR.

In the above diagram the circles represent towns and the lines good roads. In just how many different ways can a motorist, starting from London (marked with an L), make a tour of all these towns, visiting every town once, and only once, on a tour, and always coming back to London on the last ride? The exact reverse of any route is not counted as different.

Solution

255.—THE LEVEL PUZZLE.

This is a simple counting puzzle. In how many different ways can you spell out the word LEVEL by placing the point of your pencil on an L and then passing along the lines from letter to letter. You may go in any direction, backwards or forwards. Of course you are not allowed to miss letters—that is to say, if you come to a letter you must use it.

Solution

256.—THE DIAMOND PUZZLE.

IN how many different ways may the word DIAMOND be read in the arrangement shown? You may start wherever you like at a D and go up or down, backwards or forwards, in and out, in any direction you like, so long as you always pass from one letter to another that adjoins it. How many ways are there?

Solution

257.—THE DEIFIED PUZZLE.

In how many different ways may the word DEIFIED be read in this arrangement under the same conditions as in the last puzzle, with the addition that you can use any letters twice in the same reading?

Solution

258.—THE VOTERS' PUZZLE.

Here we have, perhaps, the most interesting form of the puzzle. In how many different ways can you read the political injunction, "RISE TO VOTE, SIR," under the same conditions as before? In this case every reading of the palindrome requires the use of the central V as the middle letter.

Solution

259.—HANNAH'S PUZZLE.

A man was in love with a young lady whose Christian name was Hannah. When he asked her to be his wife she wrote down the letters of her name in this manner:—

and promised that she would be his if he could tell her correctly in how many different ways it was possible to spell out her name, always passing from one letter to another that was adjacent. Diagonal steps are here allowed. Whether she did this merely to tease him or to test his cleverness is not recorded, but it is satisfactory to know that he succeeded. Would you have been equally successful? Take your pencil and try. You may start from any of the H's and go backwards or forwards and in any direction, so long as all the letters in a spelling are adjoining one another. How many ways are there, no two exactly alike?

Solution

260.—THE HONEYCOMB PUZZLE.

Here is a little puzzle with the simplest possible conditions. Place the point of your pencil on a letter in one of the cells of the honeycomb, and trace out a very familiar proverb by passing always from a cell to one that is contiguous to it. If you take the right route you will have visited every cell once, and only once. The puzzle is much easier than it looks.

Solution

261.—THE MONK AND THE BRIDGES.

In this case I give a rough plan of a river with an island and five bridges. On one side of the river is a monastery, and on the other side is seen a monk in the foreground. Now, the monk has decided that he will cross every bridge once, and only once, on his return to the monastery. This is, of course, quite easy to do, but on the way he thought to himself, "I wonder how many different routes there are from which I might have selected." Could you have told him? That is the puzzle. Take your pencil and trace out a route that will take you once over all the five bridges. Then trace out a second route, then a third, and see if you can count all the variations. You will find that the difficulty is twofold: you have to avoid dropping routes on the one hand and counting the same routes more than once on the other.

Solution